Представления многих о Data Science ошибочны
Когда заходит речь о работе с большими данными, многие сразу представляют себе академиков в каком-нибудь научно-исследовательском институте или программистов, которые сидят за компьютером и пишут код 24/7. Поэтому сложилось мнение, что освоить профессию дата-сайентиста непросто (не просто так ведь ее называют одной из самых востребованных!). Но на самом деле большая часть того, что вы знаете о Data Science — это миф. Разберем самые популярные из них.
Широко распространено мнение, что дата-сайентисты только и делают, что разрабатывают нейросети и занимаются машинным обучением. Это вовсе не так, наука о данных гораздо более обширна, чем может казаться на первый взгляд. Data Science — это больше про анализ данных, а за машинное обучение отвечает другое ответвление науки о даных — Machine Learning. Дата-сайентист же больше обрабатывает массивы данных, ищет в них закономерности и помогает с их помощью решать различные задачи в бизнесе.
Например, с помощью такого анализа можно выявить, в каких местах клиент банка тратит больше всего, чтобы в следующем месяце предоставить ему эксклюзивное индивидуальное предложение. А чтобы автоматизировать этот процесс, нужны специалисты по машинному обучению, которые могут научить компьютер делать автоматические предсказания. И все это в совокупности является наукой Data Science.
Кадр из сериала «Кремниевая долина»
Data Science — новая специальность, и у нее нет каких-либо ограничений относительно того, кто может выучиться на нее. Инженер вы или гуманитарий, разобраться в больших данных будет несложно. Главное — подобрать нужный курс, где не просто нужно штудировать учебники, а есть много практических заданий и поддержка преподавателей (менторов), которые помогут, если что-то не получается.
Ну и, конечно, иметь желание учиться и познавать новое. Конечно, если вы знаете языки программирования и общаетесь с компьютером на «ты», это ускорит процесс освоения специальности, но зачастую наличие другого образования, не связанного с программированием, может стать большим плюсом. Финансисты смогут решать с помощью Data Science задачи, которые касаются их специализации, а биологи — делать новые медицинские открытия.
Например, не так давно команда DеepMind создала алгоритм AlphaFold 2, который помог определить трехмерную структуру белка. Это открытие позволит создать новые лекарственные препараты против болезней, поскольку с помощью структуры ученые будут знать, как работает белок, как он сворачивается и взаимодействует с другими элементами, чтобы его можно было безболезненно использовать в лекарствах.
Типичный специалист по работе с данными в глазах большинства выглядит как худощавый паренек в очках, который с утра до ночи работает с таблицами, строит диаграммы и считает, считает, считает. Этот же стереотип ранее применяли относительно программистов, но все изменилось. Достаточно посмотреть сериал «Кремниевая долина», чтобы хотя бы поверхностно понять, с какими задачами сталкиваются дата-сайентисты в современном мире. Это не просто офисные клерки, которые перепечатывают данные из одних таблиц в другие — они часто сталкиваются с задачами, которые вообще никто не решал. И выявляют закономерности, которые простой обыватель в жизни даже не заметил бы.
Кто бы мог подумать, что изучая погоду, можно предсказать цены на нефть?
Еще один миф, который сформировался, еще когда эта профессия только получала развитие. Тогда действительно все вычисления оставались в основном на бумаге. Но затем, когда бизнес понял, насколько важны данные, все изменилось. Сейчас вы каждый день видите работу дата-сайентистов, хотя даже не подозреваете об этом. Например, когда заходите в социальную сеть, и там отображается блок с аккаунтами людей, которых вы можете знать. Или выбираете новые категории кэшбека в банковском приложении. Или когда вызываете такси, и система выбирает ближайшего к вам водителя по вашим запросам из десятков других в округе.
Машинное обучение посредством потребления большого количества изображений позволяет, например, с успехом реализовывать проект самоуправляемого автомобиля Google.
Кадр из фильма «Стажер»
А вот и нет, рынок больших данных растет с каждым годом. В связи с этим растет спрос и на профильных специалистов. Так что вы успеете даже не просто запрыгнуть в последний вагон уходящего поезда, а спокойно дойти до локомотива и разместиться с комфортом.
Заработные платы дата-сайентистов только растут
Студенты курса не только учатся основам работы с большими данными, но и также программированию на Python, основам математики и статистики, осваивают практический machine learning и data engineering. Программа составлена ведущими экспертами в Data Science — NVIDIA и EORA. Преимущество этого курса также в том, что он охватывает основные направления для работы с данными. На каждом этапе курса вы будете решать реальные кейсы, которые станут частью вашего портфолио. Менторы помогут вам дойти до конца обучения, всегда поддержат мотивацию и помогут, если что-то не понятно.
Учитывая, что уже через год-два после старта учебы можно устроиться на позицию джуниора с зарплатой 80–120 тысяч рублей, такую возможность лучше не упускать. Востребованность дата-сайентистов растет чуть ли не каждый месяц, особенно в условиях пандемии, когда IT-сфера находится на подъеме и нуждается в новых кадрах.
*Скидка не суммируется со скидками на сайте